
Comments of the definitions of coherent states for the SUSY harmonic oscillator

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 6271

(http://iopscience.iop.org/0305-4470/26/22/026)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 20:05

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/22
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys. A. Math. Gen. 26 (1993) 6271-6275. Printed in the UK 
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(Quebec), H3C 317, Canada 

Received 10 May 1993 

AbshaFt. We want to insist on the possibility of regarding coherent states for the 
supersymmetric harmonic oscillator equivalently in three different ways, just as in the 
usual bosonic “e. 

As has already been mentioned [l], coherent states can be defined in three different 
ways: as minimum uncertainty states, as eigenstates of an annihilation operator or as 
displacement operator coherent states. This last approach may be described in other 
words as a group-theoretical treatment [2] of coherent states. These definitions 
appear naturally in the most simple example of the harmonic oscillator and in this case 
they coincide. It must be noticed that coherent states and their applications [3] have 
received much attention in the different directions given above but, apart from the 
example of the harmonic oscillator, they give, in general, non-equivalent results. 

Starting once again with the usual harmonic oscillator, which will be called bosonic 
in the following, an extension has been considered to involve both bosonic and 
fermionic degrees of freedom. It is of course the supersymmetric (SUSY) harmonic 
oscillator. 

In its quantum version it has been initiated by Witten [4] and has been the starting 
point for several group-theoretical considerations, such as the existence of invariance 
superalgebras and supergroups [5]. 

This SUSY harmonic oscillator has been the example to consider in order to 
introduce the concept of supercoherent states which has been developed, as one might 
expect, in the three ways given above. In fact, the first appearance of such states came 
from Aragone and Zypman [l], where they are defined as eigenstates of an annihila- 
tion operator. Later, it was shown [6] that it is not possible to relate them to minimum 
uncertainty states and to a group-theoretical approach. Independently, the group- 
theoretical point of view has been treated from a generalization of Perelomov’s 
approach [2] based on supergroups and their representations [7,8]. 

A point that has already been noticed [8] is the fact that the SUSY harmonic 
oscillator supercoherent states do not share with their usual (non-super) counterparts 
the equivalence in their defining properties. In fact, we want to show here that it is 
mainly the definition of an annihilation operator given in [I] that causes all the 
trouble. So -we will suggest another delinition in order to clarify the connection 
between the three approaches. 
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Let us start with the usual considerations in the quantum SUSY harmonic oscillator. 
It is characterized by the Hamiltonian 

H=+($'+ w2cj2) +&uu3 = w(a+a +f'f) (1) 
where we have introduced the bosonic (a,a') and fermionic (f,f') creation and 
annihilition operators. They are defined as usual by 

1 1 
a+ == (uq-irj) a == (wcj -t irj) 

f + =U+ = +(U, + io3 f= U- = +(uI - ioz) (3) 

[a, a'] = 1 Ct,f+)=l. (4) 

H=IQ, Q+) Q = i G a + f  Q+ = i G a f  +. (5) 

(the u,'s being the usual Pauli matrices) and satisfy the well known relations 

Note that its SUSY character appears from the fact that the Hamiltonian can be 
written as the anti-commutator of the conserved supercharges Q and Q': 

Since we are concerned with characterization of supercoherent states in different 
ways, it is necessary to give the representation space on which they will be defined. 
The natural choice is the Fock space 

S=%b@%f={le;)b=In, O), le;),=In, I), n=0,1,2. . .} (6) 
with the energy eigenvectors as basis vectors. The fermionic sector is generated by 1 e?), 
while the bosonic one by leab for all values of n, since the fermionic number operator 
N,= f 'f acts on these states as follows 

f$le;)f= le%, Nf = 0. (7) 
Following Aragone and Zypman [l], supercoherent states may be constructed as 

eigenstates of the supersymmetric annihilation operator 

A = ( ;  H) 
which satisfies 

[ H ,  A] = -@A. (9) 

Ia=e-lz12n[cos elz)b+sin eei@lz),]. (10) 

They form a two-dimensional subspace of S and an arbitrary state is given by 

The state I z ) ~  refers to the usual bosonic coherent state and is explicitly given by 

If we introduce the notation 1 ~ ) ~  for the corresponding purely fermionic state, i.e. 

we can write the SUSY coherent state lz), as 
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where 

d 
dz Iz')b = -lz)b = u'lz),. 

b ( z / Z ) s  =o , {Z(Z)~ =r(zlz)r= s(zlz)s = eJz''. (15) 
Note that the results are slightly different from [l] because of the choice of the 
Hamiltonian in (1). This way, the purely bosonic (purely fermionic in [l]) coherent 
state will be recovered as a particular coherent state. 

Now we can see that the operator 

is also a good SUSY annihilation operator because it satisfies the commutation relation 
(9). It iS nothing other than an amplification of the bosonic annihilation operator. So 
the normalized state 12) given by 

]Z)=e-lzlzn(cos +),+sin 6 ei+lz)l) (17) 
is another candidate for a supercoherent state, defined as an eigenstate of A. Putting 
v = - tan 0 e'+ and assuming cos8>0, it takes the form 

which will be of interest for the following. While such a state seems to be the natural 
choice to remain very close to the purely bosonic theory, it has not been considered 
in [l]. 

We have then two types of supercoherent states and we propose to show why the 
last candidate (18) will play a more significant role. In fact, we will show that it can be 
connected to the definitions of such states based on group theory and on a superclassi- 
cal approach. 

The group-theoretical approach, which is based here on the Weyl-Heisenberg 
supergroup W, has been treated in [SI. For the superclassical approach, while some 
information may be found in the literature about bosonic and fermionic oscillator 
coherent states [9, lo], the SUSY version has not been completely investigated. This is 
what we propose to do here in a way that makes clear the connection with the group- 
theoretical approach. 

We first summarize the results for the supercoherent states constructed from the 
action of a unitary representation of W. Such a representation is given by 

T(g)=exp{au+-au+idl+r]f++~fl (19) 

Grassmann number) [9]. Note that U, U', f, f' and I that satisfy (4), generate the 
where d, a are c-numbers (even Grassmann numbers) and r] is an a-number (odd 

~ ~ 
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Weyl-Heisenberg superalgebra W .  From this point of view, a supercoherent state is 
given by 

IQ, ~ ) G T =  T(g)leb (20) 
which is a displacement of the ground state, T(g) being called the displacement 
operator. 

Using the factorization 

(21) q g )  = e('d-('"lol')wr eu+ e-= 

and the fact that a andfact trivially on le!)*, we get 
IQ,  q)Gr=e-~~'ze-l~1"2(la, o ) - ~ [ Q ,  I)) 

where we have omitted the phase factor eid and taken into account the a-type 
character of q(q2=O). Let us insist on the fact that the state (22) is an eigenstate of 
both the bosonic and fermionic annihilation operators. Indeed, we have 

ala, 1])GT=ala,v)GT> flu? q)GT=qla>q)GT. (23) 
For the second equality we have explicitly taken into account the nilpotent nature of 
q. In connection with the type of numbers we are considering, let us also give a type to 
the vectors: la, 0) will be of C-type and la, 1) wil l  be of a-type so that the supercoher- 
ent state (22) is of C-type. We follow here the convention of De Witt [9]. 

We will now show that the superclassical approach will give an interpretation of 
the state (22) closest to the superclassical one. In this approach we require the 
evolution of the mean values of the quantum operators over the coherent states to be 
the same as the evolution of the superclassical dynamical variables. The superclassical 
Hamiltonian for the SUSY harmonic oscillator is given by [IO] 

io 
~=~@:+wz43-~(Pu.*-*P*)  (24) 

where q and q appear, respectively, as the c- and a-type dynamical variables and p,, 
ana pp are the corresponding conjugated variables. The Hamilton equations give 

1 
&(r)= -iwa(t) Q ==(U4 +ip) (25) 

and 

$(t) = -io*@) A&) =iOP*(t). (26) 

~ ( t )  = ae+' (27) 

q~(6)=ve-~~ '  p&)=iie'"' (28) 

Xc~=w(lQlZ+?f). (29) 

The superclassical solutions are 

and 

where Q is now a c-number and q an a-number. The classical energy is 
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As is well known [lo], the quantization associates with the classical variables a and y 
the operators a andf. So if we denote by IC.$ the state we are searching for, the mean 
values over this state of the quantum operators a, f and H must satisfy 

(C.SlalC.S)=a (C.SIf IC.S)=11 (C.SlHI C.S) = w(la12+ rpj). (30) 

(31) 

It is then easy to prove, using (30), that SA = a - a and X =f- 11 satisfy 

Il~lC.S)1I2 + I I~IC.S)I IZ=0~l l~I~.S)I I  = Il~lC.S)ll= 0 
and so 

a1C.S) = a1 C.S) f1C.S) = 71 C.S). 

Solving simultaneously these two eigenvalues equations, we obtain for ICs), once 
normalized, the same result as for the group-theoretical approach. Note also that the 
superclassical approach gives a meaning to the parameters a and 7 appearing in the 
1C.S) in terms of the superclassical dynamical variables q and ly; they are the initial 
values of the latter (cf. (28)). Such an interpretation cannot be obtained with the more 
abstract group-theoretical approach. 

With these last results we have the connection between the three approaches to 
supercoherent states. Indeed, it suffices to notice the analogy between (18) and (22). 
The identification a = z is immediate because a is of C-type and may be an ordinary 
complex number. For the correspondence U -q ,  it is more subtle. It is all the quantity 
qla, 1) (which is a C-type vector) which will be identified to ulz),. 
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